login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257752
Quasi-Carmichael numbers to exactly two bases.
10
221, 323, 899, 935, 1105, 1147, 1271, 1591, 1595, 1885, 2093, 2465, 2821, 4757, 4807, 4991, 5609, 5963, 6497, 7081, 7843, 9991, 10373, 10403, 10961, 11009, 12319, 13843, 14111, 16031, 17155, 17399, 17653, 17963, 19043, 19721, 20701, 24613, 27331, 28417, 29341
OFFSET
1,1
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..1487
EXAMPLE
a(1) = 221 because this is the first squarefree composite number n such that exactly two integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-11, -5): 221=13*17 and 2, 6 both divide 210 and 8, 12 both divide 216.
PROG
(PARI) for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==2, print1(n, ", ")))))
CROSSREFS
Cf. A257750 (every number of bases).
Cf. A257751, A257753, A257754, A257755, A257756, A257757, A258842 (1 and 3 to 8 bases).
Cf. A257758 (first occurrences).
Sequence in context: A345512 A048931 A052478 * A375463 A147284 A171427
KEYWORD
nonn
AUTHOR
STATUS
approved