login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.
5

%I #12 Jun 26 2015 08:36:36

%S 44290,487065,97731740,1074935965,476036316661270,5235848584389645,

%T 1050611935177517000,11555515453364758825,5117369992623387417086890,

%U 56285147779473003009380865,11294033255019751129047408500,124221295646279547914265231925

%N Pentagonal numbers (A000326) that are the sum of five consecutive pentagonal numbers.

%H Colin Barker, <a href="/A257714/b257714.txt">Table of n, a(n) for n = 1..398</a>

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,10749957122,-10749957122,0,0,-1,1).

%F G.f.: -5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)).

%e 44290 is in the sequence because P(172) = 44290 = 8400+8626+8855+9087+9322 = P(75)+ ... +P(79).

%t CoefficientList[Series[5 (29 x^8 + 275 x^7 + 60401 x^6 + 606965 x^5 - 16071841615 x^4 + 195440845 x^3 + 19448935 x^2 + 88555 x + 8858)/((1 - x) (x^2 - 322 x + 1) (x^2 + 322 x + 1) (x^4 + 103682 x^2 + 1)), {x, 0, 33}], x] (* _Vincenzo Librandi_, May 06 2015 *)

%o (PARI) Vec(-5*x*(29*x^8 +275*x^7 +60401*x^6 +606965*x^5 -16071841615*x^4 +195440845*x^3 +19448935*x^2 +88555*x +8858) / ((x -1)*(x^2 -322*x +1)*(x^2 +322*x +1)*(x^4 +103682*x^2 +1)) + O(x^100))

%Y Cf. A000326, A133301, A257715, A259402, A259403, A259404.

%K nonn,easy

%O 1,1

%A _Colin Barker_, May 05 2015