login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257663 Least positive integer k such that prime(k*n) - prime(k+n) is a square. 2
2, 24, 57, 32, 388, 37, 15, 28, 97, 67, 112, 137, 654, 8, 37, 33, 1092, 1479, 3390, 15, 77, 63, 3, 676, 36, 183, 9, 2, 252, 341, 5, 17, 3, 260, 2, 7, 193, 166, 7, 3, 1102, 7, 297, 122, 2, 807, 387, 493, 41, 1029, 189, 746, 79, 28850, 467, 4, 93, 559, 2026 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Conjecture: a(n) exists for any n > 1. Also, for any n > 0 there is a number k > 0 such that prime(k*n) + prime(k+n) is a square.

REFERENCES

Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 2..600

Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.

EXAMPLE

a(2) = 2 since prime(2*2) - prime(2+2) = 7 - 7 = 0^2.

a(3) = 24 since prime(24*3) - prime(24+3) = 359 - 103 = 16^2.

MATHEMATICA

SQ[n_]:=IntegerQ[Sqrt[n]]

Do[k=0; Label[bb]; k=k+1; If[SQ[Prime[k*n]-Prime[k+n]], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k]; Continue, {n, 2, 60}]

lpi[n_]:=Module[{k=1}, While[!IntegerQ[Sqrt[Prime[k*n]-Prime[k+n]]], k++]; k]; Array[lpi, 60, 2] (* Harvey P. Dale, Mar 12 2019 *)

CROSSREFS

Cf. A000040, A000290, A257856, A259712.

Sequence in context: A075265 A053657 A079608 * A292162 A068878 A100918

Adjacent sequences:  A257660 A257661 A257662 * A257664 A257665 A257666

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Jul 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 13:55 EST 2020. Contains 331010 sequences. (Running on oeis4.)