login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
14

%I #22 Mar 21 2022 03:06:04

%S 1,2,2,4,20,4,8,132,132,8,16,748,2112,748,16,32,3964,25124,25124,3964,

%T 32,64,20364,256488,552728,256488,20364,64,128,103100,2398092,9670840,

%U 9670840,2398092,103100,128,256,518444,21246736,147146804,270783520,147146804,21246736,518444,256

%N Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.

%H G. C. Greubel, <a href="/A257610/b257610.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.

%F Sum_{k=0..n} T(n, k) = A007559(n).

%F T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 2. - _G. C. Greubel_, Mar 20 2022

%e Triangle begins as:

%e 1;

%e 2, 2;

%e 4, 20, 4;

%e 8, 132, 132, 8;

%e 16, 748, 2112, 748, 16;

%e 32, 3964, 25124, 25124, 3964, 32;

%e 64, 20364, 256488, 552728, 256488, 20364, 64;

%e 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128;

%e 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256;

%t T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];

%t Table[T[n,k,3,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 20 2022 *)

%o (Sage)

%o def T(n,k,a,b): # A257610

%o if (k<0 or k>n): return 0

%o elif (n==0): return 1

%o else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)

%o flatten([[T(n,k,3,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 20 2022

%Y Cf. A007559 (row sums), A038208, A142458, A257620, A257622, A257624, A257626.

%Y Cf. A256890, A257609, A257610, A257612, A257614, A257616, A257617, A257618, A257619.

%Y See similar sequences listed in A256890.

%K nonn,tabl

%O 0,2

%A _Dale Gerdemann_, May 03 2015