login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 5.
6

%I #19 Mar 25 2022 02:18:18

%S 1,5,5,25,60,25,125,535,535,125,625,4210,7490,4210,625,3125,30885,

%T 86110,86110,30885,3125,15625,216560,880735,1377760,880735,216560,

%U 15625,78125,1471235,8330745,18948695,18948695,8330745,1471235,78125,390625,9764910,74498800,234897010,341076510,234897010,74498800,9764910,390625

%N Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 5.

%H G. C. Greubel, <a href="/A257607/b257607.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 5.

%F Sum_{k=0..n} T(n, k) = A049198(n).

%F From _G. C. Greubel_, Mar 24 2022: (Start)

%F T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 1, and b = 5.

%F T(n, n-k) = T(n, k).

%F T(n, 0) = A000351(n).

%F T(n, 1) = 10*6^n - 5^n*(10 + n).

%F T(n, 2) = 55*7^n - 10*6^n*(n+10) + 5^n*binomial(n+10, 2). (End)

%e Triangle begins as:

%e 1;

%e 5, 5;

%e 25, 60, 25;

%e 125, 535, 535, 125;

%e 625, 4210, 7490, 4210, 625;

%e 3125, 30885, 86110, 86110, 30885, 3125;

%e 15625, 216560, 880735, 1377760, 880735, 216560, 15625;

%e 78125, 1471235, 8330745, 18948695, 18948695, 8330745, 1471235, 78125;

%t T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];

%t Table[T[n,k,1,5], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Mar 24 2022 *)

%o (Sage)

%o def T(n,k,a,b): # A257607

%o if (k<0 or k>n): return 0

%o elif (n==0): return 1

%o else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)

%o flatten([[T(n,k,1,5) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Mar 24 2022

%Y Cf. A000351, A008292, A049198 (row sums), A256890, A257180, A257606

%Y Cf. A257615, A257624

%Y Similar sequences listed in A256890.

%K nonn,tabl

%O 0,2

%A _Dale Gerdemann_, May 03 2015