login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257501
Triangle, read by rows, T(n,k) = 2*k*C(2*(n+k),n-k)/(n+k).
1
1, 4, 1, 14, 8, 1, 48, 44, 12, 1, 165, 208, 90, 16, 1, 572, 910, 544, 152, 20, 1, 2002, 3808, 2907, 1120, 230, 24, 1, 7072, 15504, 14364, 7084, 2000, 324, 28, 1, 25194, 62016, 67298, 40480, 14625, 3248, 434, 32, 1, 90440, 245157, 303600
OFFSET
1,2
LINKS
Indranil Ghosh, Rows 1..125, flattened
FORMULA
G.f.: 1/(1-(C(x)-1)^2*y/x)-1, where C(x) is g.f. of Catalan numbers (A000108).
EXAMPLE
1;
4, 1;
14, 8, 1;
48, 44, 12, 1;
165, 208, 90, 16, 1;
MATHEMATICA
Flatten@ Table[2 k Binomial[2 (n + k), n - k]/(n + k), {n, 10}, {k, n}] (* Michael De Vlieger, Apr 27 2015 *)
PROG
(Maxima)
T(n, k):=(2*k*binomial(2*(n+k), n-k))/(n+k);
(Magma) /* Us triangle */ [[(2*k*Binomial(2*(n+k), n-k))/(n+k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Apr 27 2015
(PARI)
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(2*k*binomial(2*(n+k), n-k)/(n+k), ", "); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 04 2017
(Python)
import math
f=math.factorial
def C(n, r): return f(n)/f(r)/f(n-r)
i=1
for n in range(1, 126):
....for k in range(1, n+1):
........print str(i)+" "+str(2*k*C(2*(n+k), n-k)/(n+k))
........i+=1 # Indranil Ghosh, Mar 04 2017
CROSSREFS
Cf. A000108.
Sequence in context: A191584 A231185 A187055 * A096644 A145829 A016115
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Apr 27 2015
STATUS
approved