%I #4 Apr 23 2015 09:52:42
%S 30,36,36,39,38,39,49,41,41,49,65,51,47,51,65,90,68,59,59,68,90,128,
%T 95,77,71,77,95,128,186,134,104,89,89,104,134,186,269,191,143,116,107,
%U 116,143,191,269,392,275,200,155,134,134,155,200,275,392,573,398,284,212,173
%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1
%C Table starts
%C ..30..36..39..49..65..90.128.186.269.392.573..836.1223.1791.2621.3839.5625.8240
%C ..36..38..41..51..68..95.134.191.275.398.578..842.1229.1796.2627.3845.5630.8246
%C ..39..41..47..59..77.104.143.200.284.407.587..851.1238.1805.2636.3854.5639.8255
%C ..49..51..59..71..89.116.155.212.296.419.599..863.1250.1817.2648.3866.5651.8267
%C ..65..68..77..89.107.134.173.230.314.437.617..881.1268.1835.2666.3884.5669.8285
%C ..90..95.104.116.134.161.200.257.341.464.644..908.1295.1862.2693.3911.5696.8312
%C .128.134.143.155.173.200.239.296.380.503.683..947.1334.1901.2732.3950.5735.8351
%C .186.191.200.212.230.257.296.353.437.560.740.1004.1391.1958.2789.4007.5792.8408
%C .269.275.284.296.314.341.380.437.521.644.824.1088.1475.2042.2873.4091.5876.8492
%C .392.398.407.419.437.464.503.560.644.767.947.1211.1598.2165.2996.4214.5999.8615
%H R. H. Hardin, <a href="/A257447/b257447.txt">Table of n, a(n) for n = 1..1860</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +2*a(n-3) -a(n-4) -a(n-6) for n>12
%F k=2: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>8
%F k=3: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>6
%F k=4: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>6
%F k=5: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>5
%F k=6: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>5
%F k=7: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4)
%F k=8: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) for n>5
%F k=9: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4)
%e Some solutions for n=4 k=4
%e ..1..0..1..1..0..1....1..1..0..1..1..0....0..1..1..0..1..1....0..1..1..0..1..1
%e ..0..0..0..0..0..0....1..1..0..1..1..0....0..0..0..0..0..0....0..1..1..0..1..1
%e ..1..0..1..1..0..1....1..1..0..1..1..0....0..1..1..0..1..1....0..0..0..0..0..0
%e ..1..0..1..1..0..1....0..0..0..0..0..0....0..1..1..0..1..1....0..1..1..0..1..1
%e ..1..0..1..1..0..1....1..1..0..1..1..0....0..0..0..0..0..0....0..1..1..0..1..1
%e ..0..0..0..0..0..0....1..1..0..1..1..0....0..1..1..0..1..1....0..1..1..0..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Apr 23 2015