login
Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1.
1

%I #8 Dec 21 2018 09:40:09

%S 65,68,77,89,107,134,173,230,314,437,617,881,1268,1835,2666,3884,5669,

%T 8285,12119,17738,25973,38042,55730,81653,119645,175325,256928,376523,

%U 551798,808676,1185149,1736897,2545523,3730622,5467469,8012942,11743514

%N Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 0 and no antidiagonal sum 3 and no row sum 1 and no column sum 1.

%H R. H. Hardin, <a href="/A257444/b257444.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>5.

%F Empirical g.f.: x*(65 - 62*x + 6*x^2 - 62*x^3 + 3*x^4) / ((1 - x)*(1 - x - x^3)). - _Colin Barker_, Dec 21 2018

%e Some solutions for n=4:

%e ..1..1..0..1..1..0..1....0..0..0..0..0..0..0....0..0..0..0..0..0..0

%e ..1..1..0..1..1..0..1....1..1..0..1..1..0..1....0..1..1..1..0..1..1

%e ..1..1..0..1..1..0..1....1..1..0..1..1..0..1....0..1..1..1..0..1..1

%e ..1..1..0..1..1..0..1....1..1..0..1..1..0..1....0..0..0..0..0..0..0

%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..1..1..1..0..1..1

%e ..1..1..0..1..1..0..1....1..1..0..1..1..0..1....0..1..1..1..0..1..1

%Y Column 5 of A257447.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 23 2015