login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Apr 22 2015 10:37:35

%S 2616,7652,30309,119393,403951,1293242,4098078,12497488,37528750,

%T 111339861,326552920,949466125,2746182574,7900552664,22633690594,

%U 64617935573,183950154022,522353720305,1480269737481,4187439072469

%N Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Column 2 of A257426

%H R. H. Hardin, <a href="/A257420/b257420.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) -22*a(n-2) +19*a(n-3) +18*a(n-4) -51*a(n-5) +72*a(n-6) -170*a(n-7) +350*a(n-8) -290*a(n-9) -175*a(n-10) +299*a(n-11) +215*a(n-12) +328*a(n-13) -2659*a(n-14) +3621*a(n-15) -1361*a(n-16) -1414*a(n-17) +3863*a(n-18) -5433*a(n-19) +3704*a(n-20) -1335*a(n-21) +42*a(n-22) +1911*a(n-23) -3043*a(n-24) +3082*a(n-25) -2396*a(n-26) +1173*a(n-27) -1060*a(n-28) +488*a(n-29) +1217*a(n-30) -1835*a(n-31) +1483*a(n-32) -954*a(n-33) +223*a(n-34) +245*a(n-35) -225*a(n-36) +128*a(n-37) -173*a(n-38) +179*a(n-39) -93*a(n-40) +23*a(n-41) +2*a(n-42) -8*a(n-43) +13*a(n-44) -13*a(n-45) +6*a(n-46) -a(n-47) for n>56

%e Some solutions for n=4

%e ..0..1..0..0....0..1..0..0....0..0..0..1....0..0..1..1....0..1..1..1

%e ..1..1..1..1....0..0..0..0....0..0..0..1....0..1..0..0....0..1..0..0

%e ..0..1..0..0....1..0..0..0....1..0..1..1....0..0..0..1....0..1..0..1

%e ..0..1..0..1....0..0..1..1....1..0..1..1....1..1..1..0....1..1..1..1

%e ..0..1..1..1....0..1..0..0....0..1..1..0....1..1..1..0....1..1..1..1

%e ..1..1..1..0....0..0..0..1....0..1..0..0....0..1..0..0....1..1..1..1

%Y Cf. A257426

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 22 2015