login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.
2

%I #25 Nov 04 2019 14:59:13

%S 1,0,1,1,2,2,6,6,17,21,54,74,183,272,644,1025,2342,3928,8734,15264,

%T 33227,59989,128484,238008,503563,952038,1995955,3835381,7987092,

%U 15548654,32223061,63388488,130918071,259724317,535168956,1069025128

%N Number of 3-generalized Motzkin paths of length n with no level steps H=(3,0) at odd level.

%H Robert Israel, <a href="/A257389/b257389.txt">Table of n, a(n) for n = 0..3087</a>

%F G.f.: (1-x^3-sqrt((1-x^3)*(1-4*x^2-x^3)))/(2*x^2*(1-x^3)).

%F a(n) = Sum_{k=0..n/3}(((-1)^(n-3*k)+1)*(binomial((n-k)/2,k)*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2)))). - _Vladimir Kruchinin_, Apr 02 2016

%F (2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6) = 0. - _Robert Israel_, Nov 04 2019

%e For n=6 we have 6 paths: UDUDUD, H3H3, UUDUDD, UUUDDD, UDUUDD and UUDDUD, where H3=(3,0).

%p f:= gfun:-rectoproc({(2 + n)*a(n) + (14 + 4*n)*a(n + 1) + (-10 - 2*n)*a(n + 3) + (-20 - 4*n)*a(n + 4) + (8 + n)*a(n + 6), a(0) = 1, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 2},a(n),remember):

%p map(f, [$0..100]); # _Robert Israel_, Nov 04 2019

%o (Maxima)

%o a(n):=sum(((-1)^(n-3*k)+1)*((binomial((n-k)/2,k) )*(binomial(n-3*k,(n-3*k)/2))/((n-3*k+2))),k,0,(n)/3); /* _Vladimir Kruchinin_, Apr 02 2016 */

%Y Cf. A000108, A090344, A086622, A257178, A007317, A064613, A104455, A104498.

%K nonn

%O 0,5

%A _José Luis Ramírez Ramírez_, Apr 21 2015