This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257289 a(n) = 8*9^n - 7*8^n. 5

%I

%S 1,16,200,2248,23816,243016,2416520,23583688,226933256,2159839816,

%T 20378082440,190918934728,1778399954696,16486635929416,

%U 152228014061960,1400838452135368,12853836673840136,117654854901535816,1074656292809619080,9798007424852945608

%N a(n) = 8*9^n - 7*8^n.

%C First differences of 9^n - 8^n = A016185.

%C Number of numbers with n digits having the largest digit equal to 8. Note that this is independent of the base b > 8.

%C Equivalently, number of n-letter words over a 9-letter alphabet, which must not start with the last letter of the alphabet, and in which the first letter of the alphabet must appear.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (17,-72).

%F G.f.: (1-x)/((1-8*x)*(1-9*x)). - _Vincenzo Librandi_, May 04 2015

%t Table[8 9^n - 7 8^n, {n, 0, 20}] (* _Vincenzo Librandi_, May 04 2015 *)

%t LinearRecurrence[{17,-72},{1,16},30] (* _Harvey P. Dale_, May 26 2019 *)

%o (PARI) a(n)=8*9^n-7*8^n

%o (MAGMA) [8*9^n-7*8^n: n in [0..20]]; // _Vincenzo Librandi_, May 04 2015

%o (Sage) [8*9^n-7*8^n for n in (0..20)] # _Bruno Berselli_, May 04 2015

%Y Cf. A016185.