login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*5^n - 3*4^n.
5

%I #16 Nov 15 2023 19:07:10

%S 1,8,52,308,1732,9428,50212,263348,1365892,7026068,35916772,182729588,

%T 926230852,4681485908,23608756132,118849087028,597466660612,

%U 3000218204948,15052630632292,75469311591668,378171191679172,1894154493279188,9483966605929252

%N a(n) = 4*5^n - 3*4^n.

%C First differences of 5^n - 4^n = A005060.

%C a(n-1) is the number of numbers with n digits having the largest digit equal to 4. Note that this is independent of the base b>4. Equivalently, number of n-letter words over a 5-letter alphabet {a,b,c,d,e}, which must not start with the first letter of the alphabet, and in which the last letter of the alphabet must appear.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-20).

%F From _Vincenzo Librandi_, May 04 2015: (Start)

%F G.f.: (1-x)/((1-4*x)*(1-5*x)).

%F a(n) = 9*a(n-1) - 20*a(n-2). - (End)

%F E.g.f.: exp(4*x)*(4*exp(x) - 3). - _Stefano Spezia_, Nov 15 2023

%t Table[4 5^n - 3 4^n, {n, 0, 30}] (* _Vincenzo Librandi_, May 04 2015 *)

%o (PARI) a(n)=4*5^n-3*4^n

%o (Magma) [4*5^n-3*4^n: n in [0..30]]; // _Vincenzo Librandi_, May 04 2015

%Y Cf. A005060. See also A000225, A027649, A255463, A257286 - A257289 and A088924.

%K nonn,easy

%O 0,2

%A _M. F. Hasler_, May 03 2015