login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.
1

%I #40 Nov 22 2021 10:25:46

%S 1,3,6,2,10,6,42,6,30,2,22,6,2730,6,6,2,170,6,798,6,330,2,46,6,2730,6,

%T 6,2,290,6,14322,6,510,2,2,6,1919190,6,6,2,4510,6,1806,6,690,2,94,6,

%U 46410,6,66,2,530,6,798,6,870,2,118,6,56786730,6,6,2,170,6

%N Denominators of the inverse binomial transform of the Bernoulli numbers with B(1)=2/3.

%C Difference table of Bernoulli numbers with B(1)=2/3:

%C 1, 2/3, 1/6, 0, -1/30, 0, 1/42, 0, ...

%C -1/3, -1/2, -1/6, -1/30, 1/30, 1/42, -1/42, ...

%C -1/6, 1/3, 2/15, 1/15, -1/105, -1/21, ...

%C 1/2, -1/5, -1/15, -8/105, -4/105, ...

%C -7/10, 2/15, -1/105, 4/105, ...

%C 5/6, -1/7, 1/21, ...

%C -41/42, 2/15, ...

%C 7/6, ...

%C ...

%C First column: 1, -1/3, -1/6, 1/2, -7/10, 5/6, -41/42, 7/6, -41/30, 3/2, -35/22, 11/6, ... . a(n) is the n-th term of the denominators.

%C Antidiagonal sums: 1, 1/3, -1/2, 2/3, -5/6, 1, -7/6, 4/3, -3/2, 5/3, -11/6, 2, ... . See A060789(n).

%C a(2n+2)/a(2n+1) = 2, 5, 7, 5, 11, 455, ... .

%C By definition, for B(1) = b, the inverse binomial transform is

%C Bi(b) = 1, -1 + b, 7/6 - 2*b, -3/2 + 3*b, 59/30 + 4*b, ...

%C = A176328(n)/A176591(n) - (-1)^n *n*b.

%C With Bic(b) = 0, -1/2 + b, 1 - 2*b, -3/2 + 3*b, 2 + 4*b, ...

%C = (-1)^n *(A001477(n)/2 - n*b),

%C Bi(b) = (-1)^n *(A164555(n)/A027642(n) + A001477(n)/2 - n*b) =

%C = A027641(n)/A027642(n) + Bic(b) .

%F Conjecture: a(2n+1) = 3 followed by period 3: repeat 2, 6, 6.

%F Conjecture: a(2n) = A002445(n)/(period 3: repeat 1, 1, 3).

%F a(n) = A027641(n)/A027642(n) - (-1)^n *n/6.

%e a(0) = 1-0, a(1) = -1/2 +1/6 = -1/3, a(2) = 1/6 -1/3 = -1/6, a(3) = 0 +1/2.

%t max = 66; B[1] = 2/3; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Denominator; Table[a[n], {n, 0, max-1}] (* _Jean-François Alcover_, May 11 2015 *)

%o (Sage)

%o def A257106_list(len, B1) :

%o T = matrix(QQ, 2*len+1)

%o for m in (0..2*len) :

%o T[0, m] = bernoulli_polynomial(1, m) if m <> 1 else B1

%o for k in range(m-1, -1, -1) :

%o T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]

%o return [denominator(T[k, 0]) for k in (0..len-1)]

%o A257106_list(66, 2/3) # _Peter Luschny_, May 09 2015

%Y Cf. A256595, A027641/A027642(n), A164555(n)/A027642(n), A060789, A176328/A176591, A001477, A109007.

%K nonn

%O 0,2

%A _Paul Curtz_, Apr 23 2015