login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

From fifth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is 1/zeta; sequence gives numerator of b(n).
4

%I #12 Feb 23 2023 01:30:27

%S 1,-1,-1,-2,-1,1,-1,-6,-2,1,-1,2,-1,1,1,-21,-1,2,-1,2,1,1,-1,6,-2,1,

%T -6,2,-1,-1,-1,-399,1,1,1,4,-1,1,1,6,-1,-1,-1,2,2,1,-1,21,-2,2,1,2,-1,

%U 6,1,6,1,1,-1,-2,-1,1,2,-1596,1,-1,-1,2,1,-1,-1,12,-1,1,2,2,1,-1,-1,21,-21,1,-1,-2,1,1,1,6,-1,-2,1,2,1,1,1,399,-1,2,2,4

%N From fifth root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is 1/zeta; sequence gives numerator of b(n).

%C Dirichlet g.f. of b(n) = A257101(n)/A256693(n) is (zeta (x))^(-1/5).

%C Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/5).

%C Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...

%H Wolfgang Hintze, <a href="/A257101/b257101.txt">Table of n, a(n) for n = 1..500</a>

%F with k = 5;

%F zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;

%F c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;

%F Then solve c(k,n) = mu(n) for b(m);

%F a(n) = numerator(b(n)).

%t k = 5;

%t c[1, n_] = b[n];

%t c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]

%t nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];

%t sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];

%t t = Table[b[n], {n, 1, nn}] /. sol[[1]];

%t num = Numerator[t] (* A257101 *)

%t den = Denominator[t] (* A256693 *)

%Y Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).

%Y Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

%K sign

%O 1,4

%A _Wolfgang Hintze_, Apr 16 2015