Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Apr 16 2015 06:33:30
%S 1,6,0,8,3,5,9,4,2,1,9,8,5,5,4,5,6,5,9,2,3,1,9,4,1,5,2,3,1,6,3,7,9,3,
%T 8,1,6,4,9,2,2,5,1,5,1,3,1,4,1,8,4,2,6,7,7,2,3,9,5,3,1,1,0,6,5,0,5,3,
%U 9,2,5,4,1,0,6,0,1,7,2,8,4,3,8,7,3,7,8,8,7,4,3,7,8,2,0,7,6,0,2,4,8,8,9,1
%N Decimal expansion of Gamma(11/4).
%H David H. Bailey and Simon Plouffe, <a href="http://docserver.carma.newcastle.edu.au/156/2/96_062-Bailey-Plouffe.pdf">Recognizing Numerical Constants</a>, (1995).
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function">Particular values of the Gamma function</a>
%F (21/16)*Pi*sqrt(2)/Gamma(1/4).
%F Also equals Integral_{0..infinity} t^(7/4)*exp(-t) dt.
%e 1.6083594219855456592319415231637938164922515131418426772395311...
%t RealDigits[Gamma[11/4], 10, 104] // First
%o (PARI) gamma(11/4) \\ _Michel Marcus_, Apr 16 2015
%Y Cf. A068466 (Gamma(1/4)), A068465 (3/4), A068467 (5/4), A203130 (7/4), A257094 (9/4).
%K nonn,cons,easy
%O 1,2
%A _Jean-François Alcover_, Apr 16 2015