login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of Apéry's rational approximations p_n/q_n to zeta(3).
1

%I #15 Aug 16 2016 04:20:19

%S 1,5,292,52020,9504288,29484180000,17168660000,801669704780000,

%T 35930841355360000,1250077234358967840000,36426677336311407264000,

%U 11464402743063221545440000,42860453128110714373355232000

%N Denominators of Apéry's rational approximations p_n/q_n to zeta(3).

%H Seiichi Manyama, <a href="/A257045/b257045.txt">Table of n, a(n) for n = 0..358</a>

%H Stéphane Fischler, <a href="https://eudml.org/doc/252133">Irrationalité de valeurs de zêta.</a> Séminaire Bourbaki (2002-2003) Vol. 45, pp. 27-62 [in French]

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/AperysConstant.html">Apéry's Constant</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ap%C3%A9ry%27s_constant">Apéry's constant</a>

%F See Mathematica script.

%e 0, 6/5, 351/292, 62531/52020, 11424695/9504288, 35441662103/29484180000, ...

%e 0, 1.2, 1.202..., 1.2020569..., 1.202056903..., 1.20205690316..., ...

%t p[n_] := Sum[Binomial[n+k, k]^2*Binomial[n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[ (-1)^(m-1)/(2*m^3*Binomial[n, m]*Binomial[m+n, m]), {m, 1, k}]), {k, 0, n}]; q[n_] := Sum[Binomial[n+k, k]^2*Binomial[n, k]^2, {k, 0, n}]; Table[p[n]/q[n], {n, 0, 12}] // Denominator

%Y Cf. A002117, A005259, A059415, A059416.

%K nonn,frac

%O 0,2

%A _Jean-François Alcover_, Apr 15 2015