login
A257013
Number of sequences of positive integers with length 6 and alternant equal to n.
3
0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 5, 0, 4, 4, 9, 0, 12, 1, 13, 10, 8, 4, 33, 4, 14, 12, 21, 4, 44, 2, 33, 22, 24, 12, 62, 8, 16, 29, 63, 2, 64, 4, 57, 52, 26, 10, 111, 21, 40, 48, 45, 8, 106, 26, 94, 40, 46, 18, 164, 21, 40, 61, 97, 40, 118, 12, 87, 65, 104, 14, 221, 14, 52, 116, 88, 30, 146, 21, 157
OFFSET
1,10
COMMENTS
See A257009 for the definition of the alternant of a sequence. The number of sequences of length 1 with given alternant value n is 1, while the number of sequences of length 2 with given alternant value n is d(n), the number of divisors of n (see A000005).
LINKS
EXAMPLE
For n=14, the a(14)=4 sequences of with alternant 14 and length 6 are (1,1,1,1,4,1), (1,2,1,1,3,1), (1,3,1,1,2,1), and (1,4,1,1,1,1).
MATHEMATICA
Length6Q[x_, y_] :=
Module[{l = ContinuedFraction[(x[[2]] + 2*x[[1]] + y)/(2*x[[1]])]},
If[EvenQ[Length[l]], Return[Length[l] == 6],
If[Last[l] == 1, Return[Length[l] - 1 == 6], Return[Length[l] + 1 == 6]]]]
Table[Length[
Select[Flatten[
Select[
Table[{a, k}, {k,
Select[Range[Ceiling[-Sqrt[n^2 + 4]], Floor[Sqrt[n^2 + 4]]],
Mod[# - n^2 - 4, 2] == 0 &]}, {a,
Select[Divisors[(n^2 + 4 - k^2)/4], # > (Sqrt[n^2 + 4] - k)/2 &]}],
UnsameQ[#, {}] &], 1], Length6Q[#, n] &]], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Barry R. Smith, Apr 19 2015
STATUS
approved