OFFSET
0,2
COMMENTS
An indefinite quadratic form in two variables over the integers, A*x^2 + B*x*y + C*y^2 with discriminant D = B^2 - 4*A*C > 0, 0 or 1 (mod 4) and not a square, is called Zagier-reduced if A>0, C>0, and B>A+C.
This definition is from Zagier's 1981 book, and differs from the older and more common notion of reduced form due to Lagrange (see A082175 for this definition).
The number of pairs of integers (h,k) with |k| < sqrt(D), k^2 congruent to D (mod 4), h > (sqrt(D) - k)/2, h exactly dividing (D-k^2)/4, where D=D(n) is the discriminant being considered.
REFERENCES
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
LINKS
Barry R. Smith, Table of n, a(n) for n = 0..999
FORMULA
a(n) equals the number of pairs (h,k) with |k| < sqrt(D), k^2 congruent to D (mod 4), h > (sqrt(D) - k)/2, h exactly dividing (D-k^2)/4, where D=D(n) is the discriminant being considered.
EXAMPLE
For D=20, the pairs (h,k) as above are: (1,4), (2,2), (4,2), (5,0), (4,-2). From these, the a(6)=5 Zagier-reduced forms may be enumerated as h*x^2 + (k+2*h)*x*y + (k+h-(n-k^2)/4*h)*y^2, yielding x^2+6*x*y+4*y^2, 2*x^2+6*x*y+2*y^2, 4*x^2+10*x*y+5*y^2, 5*x^2+10*x*y+4*y^2, and 4*x^2+6*x*y+y^2.
MATHEMATICA
Table[Length[
Flatten[Select[
Table[{a, k}, {k,
Select[Range[Ceiling[-Sqrt[n]], Floor[Sqrt[n]]],
Mod[# - n, 2] == 0 &]}, {a,
Select[Divisors[(n - k^2)/4], # > (Sqrt[n] - k)/2 &]}],
UnsameQ[#, {}] &], 1]], {n,
Select[Range[
153], ! IntegerQ[Sqrt[#]] && (Mod[#, 4] == 0 ||
Mod[#, 4] == 1) &]}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Barry R. Smith, Apr 14 2015
STATUS
approved