Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Apr 12 2015 08:51:20
%S 2444,9072,38540,137381,396712,1041135,2401667,5134161,10237795,
%T 19375976,34979687,60950495,102473938,167690864,267520662,417725465,
%U 638733138,960355392,1420843461,2072173297,2981084336,4239345260,5961155164
%N Number of (n+2)X(2+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally and vertically
%C Column 2 of A256904
%H R. H. Hardin, <a href="/A256898/b256898.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -3*a(n-1) -3*a(n-2) +6*a(n-3) +29*a(n-4) +47*a(n-5) +16*a(n-6) -105*a(n-7) -271*a(n-8) -296*a(n-9) +42*a(n-10) +754*a(n-11) +1368*a(n-12) +1066*a(n-13) -661*a(n-14) -3179*a(n-15) -4512*a(n-16) -2533*a(n-17) +3012*a(n-18) +9127*a(n-19) +10713*a(n-20) +4252*a(n-21) -8359*a(n-22) -19285*a(n-23) -19343*a(n-24) -5144*a(n-25) +16462*a(n-26) +31320*a(n-27) +27381*a(n-28) +4289*a(n-29) -24514*a(n-30) -40023*a(n-31) -30827*a(n-32) -1854*a(n-33) +28450*a(n-34) +40660*a(n-35) +27667*a(n-36) -885*a(n-37) -26062*a(n-38) -32847*a(n-39) -19617*a(n-40) +2544*a(n-41) +18854*a(n-42) +20898*a(n-43) +10742*a(n-44) -2656*a(n-45) -10649*a(n-46) -10245*a(n-47) -4350*a(n-48) +1787*a(n-49) +4572*a(n-50) +3719*a(n-51) +1199*a(n-52) -822*a(n-53) -1419*a(n-54) -931*a(n-55) -185*a(n-56) +248*a(n-57) +290*a(n-58) +140*a(n-59) +5*a(n-60) -43*a(n-61) -32*a(n-62) -9*a(n-63) +2*a(n-64) +3*a(n-65) +a(n-66) for n>84
%e Some solutions for n=4
%e ..0..0..1..0....0..0..0..0....0..1..0..0....0..0..1..1....0..0..0..1
%e ..0..0..0..0....0..0..1..0....0..0..0..1....0..0..0..1....0..0..1..0
%e ..0..1..1..0....0..0..1..0....0..0..1..0....0..0..0..1....0..0..1..1
%e ..0..0..0..1....0..0..0..0....0..0..1..1....0..1..1..0....0..0..1..1
%e ..1..1..1..1....1..1..1..1....0..0..1..1....0..1..1..0....0..0..1..0
%e ..0..1..1..1....0..0..0..1....0..1..1..1....0..1..1..1....1..1..0..0
%Y Cf. A256904
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 12 2015