login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest primes of 3 X 3 magic squares formed from consecutive primes.
12

%I #56 Sep 08 2022 08:46:12

%S 1480028129,1850590057,5196185947,5601567187,5757284497,6048371029,

%T 6151077269,9517122259,19052235847,20477868319,23813359613,

%U 24026890159,26748150199,28519991387,34821326119,44420969909,49285771679,73827799009,73974781889,74220519319,76483907837,76560277009,80143089599,85892025227,89132925737,95515449037,99977424653

%N Smallest primes of 3 X 3 magic squares formed from consecutive primes.

%C Let a = a(n) for some n and {a, b, c, d, e, f, g, h, i} be the set of consecutive primes. Then it is:

%C +---+---+---+ +---+---+---+

%C | d | c | h | | c | d | h |

%C +---+---+---+ +---+---+---+

%C | i | e | a | (type 1), or | i | e | a | (type 2). See Harvey D. Heinz.

%C +---+---+---+ +---+---+---+

%C | b | g | f | | b | f | g |

%C +---+---+---+ +---+---+---+

%C The type is determined by the sign of A343195.

%C For a given magic sum S, it is easy to calculate the unique set of n^2 consecutive primes that sum up to n*S (see PROGRAM MagicPrimes() in A073519), and in particular the smallest of these (cf. PROGRAM), listed here for n = 3, in A260673 for n = 4, in A272386 for n = 5, and in A272387 for n = 6. - _M. F. Hasler_, Oct 28 2018

%D Allan W. Johnson, Jr., Consecutive-Prime Magic Squares, Journal of Recreational Mathematics, vol. 15, 1982-83, pp. 17-18.

%D H. L. Nelson, A Consecutive Prime 3 x 3 Magic Square, Journal of Recreational Mathematics, vol. 20:3, 1988, p. 214.

%H A.H.M. Smeets, <a href="/A256891/b256891.txt">Table of n, a(n) for n = 1..759</a>

%H Harvey D. Heinz, <a href="http://www.magic-squares.net/primesqr.htm#Minimum consecutive primes -3">Prime Numbers Magic Squares: Minimum consecutive primes - 3</a>, 1999-2010.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeMagicSquare.html">Prime Magic Square</a>

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%F a(n) = A151799(A151799(A151799(A151799(A166113(n))))). - _Max Alekseyev_, Nov 02 2015

%o (Magma) /* Brute-force search */ lst:=[]; n:=3; while n lt 10^11 do a:=NextPrime(n); q:=a; j:=a-n; if j mod 6 eq 0 then b:=NextPrime(a); if j eq b-a then c:=NextPrime(b); d:=c-b; if d mod 6 eq 0 then e:=NextPrime(c); k:=e-c; if k eq j then f:=NextPrime(e); if k eq f-e then g:=NextPrime(f); if g-f eq d then h:=NextPrime(g); m:=h-g; if m eq k then i:=NextPrime(h); if h-g eq i-h then Append(~lst, n); end if; end if; end if; end if; end if; end if; end if; end if; n:=q; end while; lst;

%o (PARI) A256891(n)=MagicPrimes(A270305(n),3)[1] \\ See A073519 for MagicPrimes(). - _M. F. Hasler_, Oct 28 2018

%Y Cf. A073519, A151799, A166113, A260673, A272386, A272387, A343194, A343195.

%Y Subsequence of A265139.

%K nonn

%O 1,1

%A _Arkadiusz Wesolowski_, Apr 12 2015

%E Extended by _Max Alekseyev_, Nov 02 2015