login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers divisible by prime(d+1) for each digit d of their base-9 representation.
3

%I #20 Dec 13 2024 13:22:24

%S 0,20,84,90,180,252,273,455,510,738,756,810,816,840,900,1224,1275,

%T 1460,1470,1620,1640,2090,2185,2268,2450,2541,3080,3289,3553,4199,

%U 4590,5434,6570,6642,6660,6804,7290,7326,7344,7380,7395,7470,7560,7866,8100,8160,8190,8778,8841,8925,9282

%N Numbers divisible by prime(d+1) for each digit d of their base-9 representation.

%C The base-9 variant of A256882 - A256884, A256866 - A256870 in bases 2, ..., 10.

%C A variant of A256879 where digits 0 are forbidden and divisibility by prime(d) is required.

%C From _Robert Israel_, Aug 01 2019: (Start)

%C If n is in the sequence and is even, then 9*n is in the sequence.

%C If n is in the sequence and 9^k > n, then (9^k+1)*n is in the sequence.

%C All multiples of 223092870 are in the sequence.

%C (End)

%H Robert Israel, <a href="/A256869/b256869.txt">Table of n, a(n) for n = 1..3000</a>

%F a(n) ~ 223092870*n. - _Robert Israel_, Aug 01 2019

%p P:= [seq(ithprime(i),i=1..9)]:

%p filter:= proc(n) local L;

%p L:= convert(convert(n,base,9),set);

%p L:= map(t -> P[t+1],L);

%p n mod convert(L,`*`) = 0

%p end proc:

%p select(filter, [$0..10000]); # _Robert Israel_, Aug 01 2019

%o (PARI) is(n,b=9)=!for(i=1,#d=Set(digits(n,b)),n%prime(d[i]+1)&&return)

%Y Cf. A256882, A256883, A256884, A256865-A256870, A256874-A256879, A256786.

%K nonn,base

%O 1,2

%A _M. F. Hasler_, Apr 11 2015