login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-a(n-1) * a(n-6) + a(n-2) * a(n-5)) / a(n-7) with a(n) = 1 if abs(n) < 4, a(11) = 4.
3

%I #32 Dec 17 2023 11:23:12

%S 1,1,1,1,0,1,-1,2,-3,3,-3,4,-2,8,9,17,29,50,83,107,56,239,-243,1103,

%T -2351,3775,-7227,14463,-18648,55283,54011,256666,698301,2059753,

%U 5324929,9820288,15128062,55075036,-28437275,503857819,-1438167267,4083736906

%N a(n) = (-a(n-1) * a(n-6) + a(n-2) * a(n-5)) / a(n-7) with a(n) = 1 if abs(n) < 4, a(11) = 4.

%C Similar to the Somos-6 and Somos-7 sequences with many bilinear identities.

%H G. C. Greubel, <a href="/A256858/b256858.txt">Table of n, a(n) for n = 0..416</a>

%F a(2*n - 5) = A102276(n) for all n in Z.

%F a(2*n) = A256916(n) for all n in Z.

%F a(n) = a(-n) for all n in Z.

%F 0 = a(n) * a(n+7) + a(n+1) * a(n+6) - a(n+2) * a(n+5) for all n in Z.

%F 0 = a(n) * a(n+8) - a(n+2) * a(n+6) - a(n+4)^2 + (2 - mod(n,2)) * a(n+3) * a(n+5) for all n in Z.

%F 0 = a(n) * a(n+11) + a(n+1) * a(n+10) + a(n+5) * a(n+6) for all n in Z. - _Michael Somos_, Apr 14 2015

%t Join[{1, 1, 1, 1, 0, 1, -1, 2, -3, 3, -3, 4}, RecurrenceTable[{a[n] == (-a[n - 1]*a[n - 6] + a[n - 2]*a[n - 5])/a[n - 7], a[12] == -2, a[13] == 8, a[14] == 9, a[15] == 17, a[16] == 29, a[17] == 50, a[18] == 83}, a, {n, 12, 60}]] (* _G. C. Greubel_, Aug 03 2018 *)

%t a[n_] := Which[n<0, a[-n], n<12, {1, 1, 1, 1, 0, 1, -1, 2, -3, 3, -3, 4}[[1+n]], True, a[n] = (-a[n-1]*a[n-6] + a[n-2]*a[n-5])/a[n-7]]; (* _Michael Somos_, Dec 16 2023 *)

%o (PARI) {a(n) = my(an); n = abs(n)+1; an = concat([ 1, 1, 1, 1, 0, 1, -1, 2, -3, 3, -3, 4], vector(max(0, n-12), k)); for(k=13, n, an[k] = (-an[k-1] * an[k-6] + an[k-2] * an[k-5]) / an[k-7]); an[n]};

%o (PARI) {a(n) = my(an); n = abs(n)+1; an = vector(n, k, 1); if( n>=5, an[5] = 0); if( n>=7, an[7] = -1); if( n>=8, an[8] = 2); for(k=9, n, an[k] = if( k==12, 4, (-an[k-1] * an[k-6] + an[k-2] * an[k-5]) / an[k-7])); an[n]};

%o (Magma) I:=[-2,8,9,17,29,50,83]; [1, 1, 1, 1, 0, 1, -1, 2, -3, 3, -3, 4] cat [n le 7 select I[n] else (-Self(n-1)*Self(n-6) + Self(n-2)*Self(n-5))/Self(n-7): n in [1..30]]; // _G. C. Greubel_, Aug 03 2018

%Y Cf. A102276, A256916.

%K sign

%O 0,8

%A _Michael Somos_, Apr 12 2015