Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:12
%S 0,7,5,1,0,8,3,7,0,3,3,3,3,5,4,6,1,2,3,0,1,8,9,4,3,7,0,0,2,4,7,9,3,1,
%T 1,0,7,4,5,2,3,1,3,0,7,3,4,6,8,4,3,5,1,4,3,9,0,2,5,6,2,6,2,9,4,3,9,1,
%U 1,7,1,3,5,9,8,9,3,6,2,7,8,1,9,2,8,0,1,7,5,5,5,9,5,7,2,3,2,7,4,2,3,3,6,1,0
%N Decimal expansion of the generalized Euler constant gamma(3,4) (negated).
%H G. C. Greubel, <a href="/A256846/b256846.txt">Table of n, a(n) for n = 0..10000</a>
%H D. H. Lehmer, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa27/aa27121.pdf">Euler constants for arithmetic progressions</a>, Acta Arith. 27 (1975) p. 134.
%F -log(4)/4 - PolyGamma(3/4)/4 = EulerGamma/4 - Pi/8 - log(4)/4 + log(8)/4
%e -0.07510837033335461230189437002479311074523130734684351439...
%t Join[{0}, RealDigits[-Log[4]/4 - PolyGamma[3/4]/4, 10, 104] // First ]
%o (PARI) default(realprecision, 100); Euler/4 - Pi/8 - log(4)/4 + log(8)/4 \\ _G. C. Greubel_, Aug 28 2018
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); EulerGamma(R)/4 - Pi(R)/8 - Log(4)/4 + Log(8)/4; // _G. C. Greubel_, Aug 28 2018
%Y Cf. A001620 (gamma(1,1) = EulerGamma),
%Y Primitive ruler-and-compass constructible gamma(r,k): A228725 (1,2), A256425 (1,3), A256778 (1,4), A256779 (1,5), A256780 (2,5), A256781 (1,8), A256782 (3,8), A256783 (1,12), A256784 (5,12),
%Y Other gamma(r,k) (1 <= r <= k <= 5): A239097 (2,2), A256843 (2,3), A256844 (3,3), A256845 (2,4), A256846 (3,4), A256847 (4,4), A256848 (3,5), A256849 (4,5), A256850 (5,5).
%K nonn,cons,easy
%O 0,2
%A _Jean-François Alcover_, Apr 11 2015