login
A256821
Number of length n+6 0..1 arrays with at most two downsteps in every n consecutive neighbor pairs.
1
128, 256, 512, 1024, 1888, 3204, 5088, 7677, 11120, 15579, 21230, 28264, 36888, 47326, 59820, 74631, 92040, 112349, 135882, 162986, 194032, 229416, 269560, 314913, 365952, 423183, 487142, 558396, 637544, 725218, 822084, 928843, 1046232
OFFSET
1,1
COMMENTS
Row 6 of A256816.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (5/24)*n^4 + (111/8)*n^3 - (701/24)*n^2 + (11767/60)*n - 253 for n>4.
Empirical g.f.: x*(128 - 512*x + 896*x^2 - 768*x^3 + 224*x^4 + 68*x^5 - 24*x^6 - 7*x^7 - 14*x^8 + 10*x^9) / (1 - x)^6. - Colin Barker, Jan 21 2018
EXAMPLE
Some solutions for n=4:
..0....0....0....1....0....0....1....1....0....1....1....1....1....1....0....0
..1....1....0....0....1....0....1....0....0....0....1....1....1....1....0....0
..0....1....0....0....1....0....0....1....1....1....0....1....1....1....0....0
..0....0....1....1....1....1....1....1....0....1....1....0....1....1....1....0
..0....0....1....1....1....1....1....1....0....1....0....0....1....0....1....0
..1....0....1....0....1....1....0....0....1....0....0....0....1....0....1....1
..0....0....1....1....0....0....0....1....0....1....1....0....0....1....1....0
..1....0....0....1....0....0....1....0....0....1....1....1....0....1....1....1
..1....0....1....0....1....1....1....1....1....0....1....0....1....1....1....0
..0....0....0....1....1....0....0....0....0....1....0....1....0....0....0....0
CROSSREFS
Cf. A256816.
Sequence in context: A110290 A045028 A255997 * A172421 A355919 A235059
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 10 2015
STATUS
approved