Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Aug 18 2017 10:50:30
%S 641,661,769,821,881,1109,1201,1301,1409,2069,2389,2741,3329,3541,
%T 3761,3989,4721,6101,6709,7349,7681,8369,9461,12289,14081,14549,16001,
%U 18049,19121,20789,25589,28181,31601,32309,33749,35221,35969,37489,38261,39041,39829
%N Primes of form n^2 + 625.
%C Conjecture: sequence is infinite.
%H Reinhard Zumkeller, <a href="/A256777/b256777.txt">Table of n, a(n) for n = 1..10000</a>
%o (Haskell)
%o a256777 n = a256777_list !! (n-1)
%o a256777_list = [x | x <- map (+ 625) a000290_list, a010051' x == 1]
%o (PARI) list(lim)=if(lim<641,return([])); my(v=List(),t); forstep(n=4, sqrtint(lim\1-625), 2, if(isprime(t=n^2+625), listput(v,t))); Vec(v) \\ _Charles R Greathouse IV_, Aug 18 2017
%Y Cf. A010051, A000290; subsequence of A028916.
%Y Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256840 (b=12), A256841 (b=13).
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Apr 11 2015