%I #4 Apr 09 2015 14:45:23
%S 31032,28816,38376,33616,96576,155792,404480,615296,1258112,1664400,
%T 5004928,7111808,19624576,26821008,65198848,91451776,279105152,
%U 356736400,1053470592,1397940864,3792784000,5223606672,16267412480,19397621632
%N Number of (n+2)X(7+2) 0..1 arrays with no 3x3 subblock diagonal sum 3 and no antidiagonal sum 3 and no row sum 0 and no column sum 0
%C Column 7 of A256748
%H R. H. Hardin, <a href="/A256747/b256747.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = -2*a(n-1) +2*a(n-2) +12*a(n-3) +17*a(n-4) -6*a(n-5) -2*a(n-6) +4*a(n-7) -144*a(n-8) -304*a(n-9) -96*a(n-10) +512*a(n-11) +512*a(n-12) for n>15
%e Some solutions for n=4
%e ..1..1..0..1..1..1..0..1..1....0..0..1..1..1..0..0..1..1
%e ..0..0..1..0..1..0..1..0..1....1..1..0..0..1..1..1..0..0
%e ..1..0..1..0..1..0..1..0..1....0..1..1..1..1..0..0..1..1
%e ..0..1..0..1..0..1..0..1..0....1..1..0..0..1..1..1..1..0
%e ..0..1..0..1..0..1..0..1..0....0..1..1..1..1..0..0..1..1
%e ..1..0..1..0..1..0..1..1..1....1..1..0..0..1..0..0..1..0
%Y Cf. A256748
%K nonn
%O 1,1
%A _R. H. Hardin_, Apr 09 2015