

A256720


Decimal expansion of the location of the far bifurcation cusp in the Zeeman catastrophe machine.


2



2, 4, 5, 5, 6, 6, 7, 2, 1, 9, 3, 7, 4, 7, 9, 9, 0, 4, 6, 5, 0, 2, 0, 4, 0, 5, 3, 6, 0, 9, 6, 0, 4, 2, 6, 8, 0, 8, 9, 6, 2, 4, 1, 9, 7, 2, 1, 3, 6, 2, 8, 8, 0, 6, 7, 7, 5, 4, 9, 7, 0, 9, 2, 1, 2, 0, 1, 1, 8, 8, 0, 4, 8, 4, 7, 7, 2, 3, 7, 4, 8, 9, 5, 1, 2, 0, 1, 4, 6, 9, 5, 3, 6, 6, 3, 5, 7, 5, 1, 9, 1, 1, 4, 3, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Largest root of 10*x^227*x+6, equal to (27+sqrt(489))/20 (Poston 1978).
Applies to the 'classical' Zeeman machine with a disk of diameter 1 and the distance between the pivot and the fixed point equal to 2. With respect to the pivot, the near and far bifurcation cusps are located on opposite side the fixed point. This constant is the far cusp's distance from the pivot.


REFERENCES

T. Poston and I. Stewart, Catastrophe Theory and its Applications, Pitman Publishing Ltd, 1978, Chapter 5, page 76.


LINKS



EXAMPLE

2.455667219374799046502040536096042680896241972136288067754970...


PROG

(PARI) a=(27+sqrt(489))/20 \\ Use \p 2020, and keep 2000 digits


CROSSREFS

Cf. A256719 (near bifurcation cusp).


KEYWORD



AUTHOR



STATUS

approved



