login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n+1)*(7*n-6)/2.
2

%I #21 Jan 15 2024 13:44:34

%S 0,1,24,90,220,435,756,1204,1800,2565,3520,4686,6084,7735,9660,11880,

%T 14416,17289,20520,24130,28140,32571,37444,42780,48600,54925,61776,

%U 69174,77140,85695,94860,104656,115104,126225,138040,150570,163836,177859,192660

%N a(n) = n*(n+1)*(7*n-6)/2.

%D E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (21st row of the table).

%H Bruno Berselli, <a href="/A256718/b256718.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(1 + 20*x)/(1 - x)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=24, a(3)=90.

%F a(n) = Sum_{i=0..n-1} (n-i)*(21*i+1) for n>0.

%t Table[n (n + 1) (7 n - 6)/2, {n, 0, 40}]

%t LinearRecurrence[{4,-6,4,-1},{0,1,24,90},40] (* _Harvey P. Dale_, Jan 15 2024 *)

%o (PARI) vector(40, n, n--; n*(n+1)*(7*n-6)/2)

%o (Sage) [n*(n+1)*(7*n-6)/2 for n in (0..40)]

%o (Magma) [n*(n+1)*(7*n-6)/2: n in [0..40]];

%Y Partial sums of A051875.

%Y Cf. similar sequences listed in A237616.

%K nonn,easy

%O 0,3

%A _Bruno Berselli_, Apr 09 2015