login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*(n+1)*(22*n-19)/6.
3

%I #28 Sep 08 2022 08:46:11

%S 0,1,25,94,230,455,791,1260,1884,2685,3685,4906,6370,8099,10115,12440,

%T 15096,18105,21489,25270,29470,34111,39215,44804,50900,57525,64701,

%U 72450,80794,89755,99355,109616,120560,132209,144585,157710,171606,186295,201799

%N a(n) = n*(n+1)*(22*n-19)/6.

%C This sequence is related to the tridecagonal numbers (A051865) by a(n) = n*A051865(n) - Sum_{i=0..n-1} A051865(i).

%D E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (22nd row of the table).

%H Bruno Berselli, <a href="/A256716/b256716.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(1 + 21*x)/(1 - x)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with n>3, a(0)=0, a(1)=1, a(2)=25, a(3)=94.

%F a(n) = Sum_{i=0..n-1} (n-i)*(22*i+1) for n>0.

%t Table[n (n + 1) (22 n - 19)/6, {n, 0, 40}]

%o (PARI) vector(40, n, n--; n*(n+1)*(22*n-19)/6)

%o (Sage) [n*(n+1)*(22*n-19)/6 for n in (0..40)]

%o (Magma) [n*(n+1)*(22*n-19)/6: n in [0..40]];

%Y Partial sums of A051876.

%Y Cf. similar sequences listed in A237616.

%Y Cf. A051865.

%K nonn,easy

%O 0,3

%A _Bruno Berselli_, Apr 09 2015