login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256678
Coefficients of L-series for elliptic curve "34a1": y^2 + x*y = x^3 - 3*x + 1.
1
1, 1, -2, 1, 0, -2, -4, 1, 1, 0, 6, -2, 2, -4, 0, 1, -1, 1, -4, 0, 8, 6, 0, -2, -5, 2, 4, -4, 0, 0, -4, 1, -12, -1, 0, 1, -4, -4, -4, 0, 6, 8, 8, 6, 0, 0, 0, -2, 9, -5, 2, 2, -6, 4, 0, -4, 8, 0, 0, 0, -4, -4, -4, 1, 0, -12, 8, -1, 0, 0, 0, 1, 2, -4, 10, -4
OFFSET
1,3
FORMULA
a(n) is multiplicative with a(2^e) = 1, a(17^e) = (-1)^e. For p prime, a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) and a(p) = p minus number of points of elliptic curve modulo p.
a(2*n) = a(n).
G.f. is a period 1 Fourier series which satisfies f(-1 / (34 t)) = 34 (t/i)^2 f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = q + q^2 - 2*q^3 + q^4 - 2*q^6 - 4*q^7 + q^8 + q^9 + 6*q^11 - 2*q^12 + ...
PROG
(PARI) {a(n) = if( n<1, 0, ellak( ellinit([ 1, 0, 0, -3, 1], 1), n))};
(Magma) A := Basis( CuspForms( Gamma0(34), 2), 77); A[1] + A[2] - 2*A[3];
(Sage) A = CuspForms( Gamma0(34), 2, prec = 77) . basis(); A[0] + A[1] - 2*A[2];
CROSSREFS
Sequence in context: A098542 A320019 A141343 * A066709 A258051 A174026
KEYWORD
sign,mult
AUTHOR
Michael Somos, Apr 07 2015
STATUS
approved