Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Apr 13 2015 09:42:50
%S 1,1,1,2,4,3,5,15,19,10,14,56,99,90,36,42,210,476,603,427,137,132,792,
%T 2190,3536,3507,2032,543,429,3003,9801,19185,24251,19800,9702,2219,
%U 1430,11440,43043,98890,151295,157716,109520,46472,9285,4862,43758
%N Triangle read by rows: T(n,k) = Sum_{i=n-k..n} C(k-1,n-i)*C(i,n-k)*C(2*i,i)/(i+1).
%F G.f.: (1-sqrt(1-4*(x/(1-x)+y)))/(2*(x/(1-x)+y)).
%e 1;
%e 1, 1;
%e 2, 4, 3;
%e 5, 15, 19, 10;
%e 14, 56, 99, 90, 36;
%e 42, 210, 476, 603, 427, 137;
%t T[n_, k_] := SeriesCoefficient[1-Sqrt[1-4*(x/(1-x)+y)]/(2*(x/(1-x)+y)), {x, 0, n}, {y, 0, k}]; Table[T[n-k, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Apr 13 2015 *)
%o (Maxima)
%o T(n,m):=sum((binomial(m-1,n-i)*binomial(i,n-m)*binomial(2*i,i))/(i+1),i,n-m,n);
%Y Cf. A000108 (first column), A002212 (right diagonal).
%K nonn,tabl
%O 0,4
%A _Vladimir Kruchinin_, Apr 10 2015