login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256576
Decimal expansion of Ramanujan's constant G(1) = Sum_{r>=1} 1/(2r^3)*(1 + 1/3 + ... + 1/(2r-1)).
0
1, 6, 2, 2, 7, 1, 9, 3, 9, 4, 7, 1, 4, 8, 3, 3, 9, 0, 7, 1, 5, 3, 5, 9, 5, 5, 1, 8, 0, 8, 0, 7, 1, 2, 0, 6, 4, 7, 3, 4, 9, 9, 7, 5, 1, 4, 0, 0, 3, 4, 6, 3, 1, 4, 2, 5, 8, 8, 6, 7, 2, 7, 2, 9, 3, 7, 8, 1, 1, 7, 2, 1, 2, 1, 0, 5, 0, 3, 9, 7, 1, 4, 2, 5, 2, 4, 0, 5, 3, 8, 0, 7, 9, 6, 7, 4, 9, 8, 9, 2
OFFSET
0,2
LINKS
Marc-Antoine Coppo and Bernard Candelpergher, Inverse binomial series and values of Arakawa-Kaneko zeta functions, J. Number Theory 150 (2015) 98-119 eq. (25).
R. Sitaramachandrarao, A Formula of S. Ramanujan , Journal of Number Theory 25, 1-19 (1987)
FORMULA
G(1) = Pi^4/480 - (1/4)*Sum_{r>=2} (-1)^r*H(r-1,2)/r^2, where H(n,m) is the n-th harmonic number of order m.
F(1) = 7*Zeta(3)/16 = Sum_{r>=1} (1+1/3+1/5+..+1/(2r-1))/r^2 = 0.525899895... [Coppo] - R. J. Mathar, Jun 13 2024
EXAMPLE
0.1622719394714833907153595518080712064734997514...
MATHEMATICA
digits = 100; G1 = NSum[(1/(2*r)^3)*(1/2*(EulerGamma + Log[4]) + 1/2*PolyGamma[ 1/2+r]), {r, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> 40, Method -> {"NIntegrate", "MaxRecursion" -> 10}]; RealDigits[G1, 10, digits] // First
CROSSREFS
Sequence in context: A172439 A169684 A259838 * A201674 A093497 A092138
KEYWORD
nonn,cons
AUTHOR
STATUS
approved