login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of deficient numbers <= n.
2

%I #19 Sep 08 2022 08:46:11

%S 1,2,3,4,5,5,6,7,8,9,10,10,11,12,13,14,15,15,16,16,17,18,19,19,20,21,

%T 22,22,23,23,24,25,26,27,28,28,29,30,31,31,32,32,33,34,35,36,37,37,38,

%U 39,40,41,42,42,43,43,44,45,46,46,47,48,49,50,51,51,52,53

%N Number of deficient numbers <= n.

%H Amiram Eldar, <a href="/A256562/b256562.txt">Table of n, a(n) for n = 1..10000</a>

%H Marc Deléglise, <a href="http://projecteuclid.org/euclid.em/1048515661">Bounds for the density of abundant integers</a>, Experiment. Math. Volume 7, Issue 2 (1998), 137-143.

%H Charles R. Wall, Phillip L. Crews and Donald B. Johnson, <a href="http://dx.doi.org/10.1090/S0025-5718-1972-0327700-7">Density bounds for the sum of divisors function</a>, Math. Comp. 26 (1972), 773-777.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AbundantNumber.html">Abundant Number</a>

%F a(n) ~ c*n, where c = 0.752380... is the asymptotic density of the deficient numbers (A318172). - _Amiram Eldar_, Mar 21 2021

%e For k=1 to 5, all numbers are deficients so a(k) = k in this range.

%e a(6) = 5 since 6 is the first number that is not deficient.

%t a[n_]:=Length[Select[Range[n],DivisorSigma[1,#]/#<2&]];a/@Range[68] (* _Ivan N. Ianakiev_, Apr 03 2015 *)

%o (PARI) a(n) = sum(k=1, n, sigma(k)/k < 2);

%o (Magma) [#[k:k in [1..n]| DivisorSigma(1,k) lt 2*k]:n in [1..70]]; // _Marius A. Burtea_, Nov 06 2019

%Y Partial sums of A294934.

%Y Cf. A000396 (perfect), A005100 (deficient), A005101 (abundant).

%Y Cf. A091194 (number of abundant numbers <= n).

%Y Cf. A256440, A318172.

%K nonn

%O 1,2

%A _Michel Marcus_, Apr 02 2015