login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonpalindromic positive integers k such that the absolute value of k^2 - reverse(k)^2 is a square.
4

%I #28 Sep 08 2022 08:46:11

%S 56,65,5265,5625,5656,6565,12705,44370,50721,51557,55517,56056,59248,

%T 65065,71555,75515,84295,139755,273728,360145,481610,523908,541063,

%U 557931,560056,560439,565656,606056,621770,650065,650606,656565,697996,699796,809325,827372

%N Nonpalindromic positive integers k such that the absolute value of k^2 - reverse(k)^2 is a square.

%H Michael S. Branicky, <a href="/A256515/b256515.txt">Table of n, a(n) for n = 1..425</a> (all terms < 10^11; terms 1..68 from Bui Quang Tuan)

%e The nonpalindromic number 5265 is a term because abs(5265^2 - 5625^2) = 1980^2.

%t Select[Range[200000], ! PalindromeQ@ # && IntegerQ@ Sqrt@ Abs[#^2 - IntegerReverse[#]^2] &] (* _Michael De Vlieger_, Mar 02 2022 *)

%o (Magma) [n: n in [0..10^6] | Intseq(n) ne Reverse(Intseq(n)) and IsSquare(s) where s is Abs(n^2-Seqint(Reverse(Intseq(n)))^2)]; // _Bruno Berselli_, Apr 01 2015

%o (Python)

%o from sympy.ntheory.primetest import is_square

%o def R(n): return int(str(n)[::-1])

%o def ok(n): Rn = R(n); return n != Rn and is_square(abs(n**2 - Rn**2))

%o print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Mar 02 2022

%Y Cf. A004086 (digit reversal), A202386, A068536.

%K nonn,base

%O 1,1

%A _Bui Quang Tuan_, Apr 01 2015