login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer solutions to n^2 = x^2 + y^2 with x>0, y>=0.
2

%I #20 Aug 18 2024 11:45:55

%S 1,1,1,1,3,1,1,1,1,3,1,1,3,1,3,1,3,1,1,3,1,1,1,1,5,3,1,1,3,3,1,1,1,3,

%T 3,1,3,1,3,3,3,1,1,1,3,1,1,1,1,5,3,3,3,1,3,1,1,3,1,3,3,1,1,1,9,1,1,3,

%U 1,3,1,1,3,3,5,1,1,3,1,3,1,3,1,1,9,1,3

%N Number of integer solutions to n^2 = x^2 + y^2 with x>0, y>=0.

%H Amiram Eldar, <a href="/A256452/b256452.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = 2*e + 1 if p == 1 (mod 4), otherwise a(p^e) = 1.

%F a(n) = 1 + 2*A046080(n) if n>0.

%F a(n) = A046109(n)/4 for n > 0. - _Hugo Pfoertner_, Sep 21 2023

%F a(n) = A002654(n^2). - _Ridouane Oudra_, Aug 18 2024

%p a:= n-> add(`if`(d::odd, (-1)^((d-1)/2), 0), d=numtheory[divisors](n^2)): seq(a(n), n=1..100); # _Ridouane Oudra_, Aug 18 2024

%t a[ n_] := Sum[ Mod[ Length@Divisors[n^2 - k^2], 2], {k, n}];

%t a[ n_] := Length @ FindInstance[ n^2 == x^2 + y^2 && x > 0 && y >= 0, {x, y}, Integers, 10^9]; (* _Michael Somos_, Aug 15 2016 *)

%t f[p_, e_] := If[Mod[p, 4] == 1, 2*e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 12 2020 *)

%o (PARI) {a(n) = sum(k=1, n, issquare(n^2 - k^2))};

%Y Cf. A046080, A046109, A002654.

%K nonn,mult

%O 1,5

%A _Michael Somos_, Mar 29 2015