%I #16 Aug 05 2018 08:23:34
%S 1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,
%T 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1
%N Characteristic function of dodecahedral numbers.
%C Dodecahedral numbers are of the form m(3m-1)(3m-2)/2.
%H Antti Karttunen, <a href="/A256433/b256433.txt">Table of n, a(n) for n = 0..105995</a>
%H <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%F For n > 0, a(n) = floor(t(n) + 1/(27 * t(n)) + 1/3) - floor(t(n-1) + 1/(27 * t(n-1)) + 1/3), where t(n) = ( sqrt(243*n^2-1)/(3^(9/2)) + n/9 )^(1/3).
%t With[{ddn=Table[m(3m-1)(3m-2)/2,{m,0,10}]},Table[If[MemberQ[ddn,n],1,0],{n,0,100}]] (* _Harvey P. Dale_, Oct 18 2015 *)
%o (PARI)
%o A006566(n) = (n*(3*n-1)*(3*n-2)/2);
%o A256433(n) = { my(i=0); while(A006566(i) < n, i++); return(A006566(i) == n); }; \\ _Antti Karttunen_, Aug 05 2018
%Y Cf. A006566 (dodecahedral numbers).
%Y Cf. also A023533, A010057, A256432, A256434.
%K nonn
%O 0
%A _Mikael Aaltonen_, Mar 28 2015