OFFSET
1,3
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..1024
Cooper, Shaun; Hirschhorn, Michael. On Some Finite Product Identities. Rocky Mountain J. Math. 31 (2001), no. 1, 131--139.
FORMULA
L.g.f.: Sum_{n>=0} log( (1-x^(3+8*n))*(1-x^(5+8*n))*(1-x^(8+8*n)) / ( (1-x^(1+8*n))*(1-x^(4+8*n))*(1-x^(7+8*n)) ) ). [See Cooper and Hirschhorn reference]
From formulas given by Michael Somos in A093709: (Start)
L.g.f.: log( (theta_3(x) + theta_3(x^2)) / 2).
L.g.f.: Log( psi(q^4) * f(-q^3, -q^5) / f(-q, -q^7) ) in powers of q where psi(), f() are Ramanujan theta functions.
L.g.f.: Log( f(-q^3, -q^5)^2 / psi(-q) ) in powers of q where psi(), f() are Ramanujan theta functions.
(End)
a(n) == 1 (mod 2) iff n is a square or twice square (A028982).
a(n) = -sigma(n) + [Sum_{d|n, d==2 (mod 4)} d] + [Sum_{d|n, d==1,4,7 (mod 8)} 2*d].
EXAMPLE
L.g.f.: L(x) = x + x^2/2 - 2*x^3/3 + 5*x^4/4 - 4*x^5/5 - 2*x^6/6 + 8*x^7/7 - 3*x^8/8 + 7*x^9/9 - 4*x^10/10 - 10*x^11/11 + 14*x^12/12 - 12*x^13/13 + 8*x^14/14 + 8*x^15/15 - 19*x^16/16 +...+ a(n)*x^n/n +...
where
exp(L(x)) = 1 + x + x^2 + x^4 + x^8 + x^9 + x^16 + x^18 + x^25 + x^32 + x^36 + x^49 + x^50 + x^64 + x^72 + x^81 + x^98 + x^100 +...+ x^A028982(n) +...
PROG
(PARI) {a(n) = local(L=x); L = log(1 + sum(k=1, sqrtint(n+1), x^(k^2) + x^(2*k^2)) +x*O(x^n)); n*polcoeff(L, n)}
for(n=1, 121, print1(a(n), ", "))
(PARI) {a(n) = -sigma(n) + sumdiv(n, d, if(d%4==2, d)) + 2*sumdiv(n, d, if((d%8)%3==1, d))}
for(n=1, 121, print1(a(n), ", "))
(PARI) {a(n) = local(L, X=x+x*O(x^n)); L = sum(m=0, n\8+1, log( (1-x^(3+8*m))*(1-x^(5+8*m))*(1-x^(8+8*m)) / ( (1-x^(1+8*m))*(1-x^(4+8*m))*(1-x^(7+8*m) +x*O(x^n)) ))); n*polcoeff(L, n)}
for(n=1, 121, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 03 2015
STATUS
approved