login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.
3

%I #21 Apr 09 2024 15:59:57

%S 8,9,15,16,21,22,25,28,34,75,87,91,93,94,106,111,123,141,143,145,147,

%T 155,172,201,205,214,217,237,255,298,304,305,363,371,376,377,385,388,

%U 395,403,411,423,428,442,458,466,471,473,483,495,501,505,507,531,533

%N Composites in base 10 that remain composite in exactly seven bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

%H Sebastian Petzelberger, <a href="/A256351/b256351.txt">Table of n, a(n) for n = 1..10000</a>

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_024.htm">PP&P Puzzle 24: Primes in several bases</a>

%p f:= proc(b,x) local L,i;

%p L:= convert(x,base,b);

%p isprime(add(10^(i-1)*L[i],i=1..nops(L)))

%p end proc:

%p select(t -> not isprime(t) and nops(select(f,[$2..9],t))=2, [$1..1000]); # _Robert Israel_, Mar 26 2015

%t fQ[n_] := CompositeQ@ n && Count[ CompositeQ[ FromDigits[ IntegerDigits[n, #]] & /@ Range[2, 9]], True] == 6; Select[ Range@ 500, fQ] (* _Robert G. Wilson v_, Mar 26 2015 *)

%Y Cf. A052026, A256350 - A256356.

%Y Cf. A038537, A052027, A052028, A052029, A052030, A052031, A052032, A084482.

%Y Cf. A052033, A236356.

%K nonn,base

%O 1,1

%A _Sebastian Petzelberger_, Mar 25 2015