login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256327
Number of partitions of 5n into exactly 4 parts.
3
0, 1, 9, 27, 64, 120, 206, 321, 478, 672, 920, 1215, 1575, 1991, 2484, 3042, 3689, 4410, 5231, 6136, 7153, 8262, 9495, 10830, 12300, 13881, 15609, 17457, 19464, 21600, 23906, 26351, 28978, 31752, 34720, 37845, 41175, 44671, 48384, 52272, 56389, 60690, 65231
OFFSET
0,3
FORMULA
G.f.: x*(5*x^7+13*x^6+24*x^5+29*x^4+28*x^3+17*x^2+8*x+1) / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)).
EXAMPLE
For n=2 the 9 partitions of 5*2 = 10 are [1,1,1,7], [1,1,2,6], [1,1,3,5], [1,1,4,4], [1,2,2,5], [1,2,3,4], [1,3,3,3], [2,2,2,4] and [2,2,3,3].
PROG
(PARI) concat(0, vector(40, n, k=0; forpart(p=5*n, k++, , [4, 4]); k))
(PARI) concat(0, Vec(x*(5*x^7+13*x^6+24*x^5+29*x^4+28*x^3+17*x^2+8*x+1) / ((x-1)^4*(x+1)^2*(x^2+1)*(x^2+x+1)) + O(x^100)))
CROSSREFS
Cf. A256328 (6n), A256329 (7n).
Sequence in context: A340119 A271990 A153237 * A011923 A029875 A335671
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 25 2015
STATUS
approved