Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:46:11
%S 712329866165608783,712329866165608813,712329866165609323,
%T 712329866165609371,712329866165610103,712329866165611741,
%U 712329866165612077,712329866165612677,712329866165612803,712329866165614933,712329866165621653,712329866165624023
%N Primes of the form n^2 + n + 712329866165608771.
%C From Mollin's paper: "x^2 + x + A with A=712329866165608771 has the largest asymptotic density of primes for any polynomial of this type to date" (1997).
%C Is it still so?
%H R. A. Mollin, <a href="http://www.jstor.org/stable/2975080">Prime-producing quadratics</a>, Amer. Math. Monthly 104 (1997), page 542.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Ulam_spiral#Hardy_and_Littlewood.27s_Conjecture_F">Hardy and Littlewood's Conjecture F</a>
%t Select[Table[n^2 + n + 712329866165608771, {n, 1, 200}], PrimeQ]
%o (Magma) [a: n in [1..200] | IsPrime(a) where a is n^2 + n + 712329866165608771];
%o (PARI) for(n=1,100,if(isprime(k=n^2+n+712329866165608771),print1(k,", "))) \\ _Derek Orr_, Apr 05 2015
%Y Cf. A256674 (associated n).
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Apr 05 2015