login
First differences of A256260.
5

%I #15 Apr 19 2015 22:26:56

%S 1,4,4,12,4,12,20,28,4,12,20,28,20,44,68,60,4,12,20,28,20,44,68,60,20,

%T 44,68,92,116,140,164,124,4,12,20,28,20,44,68,60,20,44,68,92,116,140,

%U 164,124,20,44,68,92,116,140,164,188,212,236,260,284,308,332,356,252,4,12,20,28,20,44,68,60,20,44,68,92,116,140

%N First differences of A256260.

%C First 27 terms agree with A169708. Both sequences share infinitely many terms.

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%F a(n) = 4*A256263(n), n >= 1.

%e Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:

%e 1;

%e 4;

%e 4,12;

%e 4,12,20,28;

%e 4,12,20,28,20,44,68,60;

%e 4,12,20,28,20,44,68,60,20,44,68,92,116,140,164,124;

%e 4,12,20,28,20,44,68,60,20,44,68,92,116,140,164,124,20,44,68,92,116,140,164,188,212,236,260,284,308,332,356,252;

%e ...

%e It appears that the row sums give A000302.

%e It appears that the right border gives A173033.

%Y Cf. A000302, A011782, A139251, A147582, A169708, A173033, A256258, A256251, A256260, A256263, A256264, A256265.

%K nonn,tabf

%O 0,2

%A _Omar E. Pol_, Mar 30 2015