%I #15 Apr 19 2015 22:26:56
%S 1,4,4,12,4,12,20,28,4,12,20,28,20,44,68,60,4,12,20,28,20,44,68,60,20,
%T 44,68,92,116,140,164,124,4,12,20,28,20,44,68,60,20,44,68,92,116,140,
%U 164,124,20,44,68,92,116,140,164,188,212,236,260,284,308,332,356,252,4,12,20,28,20,44,68,60,20,44,68,92,116,140
%N First differences of A256260.
%C First 27 terms agree with A169708. Both sequences share infinitely many terms.
%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F a(n) = 4*A256263(n), n >= 1.
%e Written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
%e 1;
%e 4;
%e 4,12;
%e 4,12,20,28;
%e 4,12,20,28,20,44,68,60;
%e 4,12,20,28,20,44,68,60,20,44,68,92,116,140,164,124;
%e 4,12,20,28,20,44,68,60,20,44,68,92,116,140,164,124,20,44,68,92,116,140,164,188,212,236,260,284,308,332,356,252;
%e ...
%e It appears that the row sums give A000302.
%e It appears that the right border gives A173033.
%Y Cf. A000302, A011782, A139251, A147582, A169708, A173033, A256258, A256251, A256260, A256263, A256264, A256265.
%K nonn,tabf
%O 0,2
%A _Omar E. Pol_, Mar 30 2015