login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256207
Number of permutations in S_n that avoid the pattern 53421.
1
1, 1, 2, 6, 24, 119, 694, 4582, 33325, 261853, 2191902, 19344408, 178582940, 1713999264, 17019444969, 174149184184, 1830279810276, 19703572779755, 216769635980879, 2432308876304981, 27788506478197951, 322770995262901091, 3806657237502632706, 45532086120583546634
OFFSET
0,3
LINKS
Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
MATHEMATICA
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {___, p[[p1]], ___, p[[p2]], ___, p[[p3]], ___, p[[p4]], ___, p[[p5]], ___}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {5, 3, 4, 2, 1}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
CROSSREFS
Representatives for the 16 Wilf-equivalence patterns of length 5 are given in A116485, A047889, and A256195-A256208.
Cf. A099952.
Sequence in context: A256206 A052397 A047889 * A256208 A264432 A094198
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 19 2015
EXTENSIONS
More terms from Anthony Guttmann, Sep 29 2021
STATUS
approved