Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Apr 10 2018 14:17:05
%S 1,1,0,1,1,0,1,2,1,0,1,3,2,1,0,1,4,3,4,1,0,1,5,4,9,2,1,0,1,6,5,16,3,4,
%T 1,0,1,7,6,25,4,9,4,1,0,1,8,7,36,5,16,9,8,1,0,1,9,8,49,6,25,16,27,2,1,
%U 0,1,10,9,64,7,36,25,64,3,4,1,0,1,11,10,81,8,49,36,125,4,9,4,1,0,1,12,11,100,9,64,49,216,5,16,9,8,1,0
%N Square array read by antidiagonals upwards: T(n,k) = n^A000120(k), n>=0, k>=0.
%C The partial sums of row n give the n-th row of the square array A256141.
%C First differs from A244003 at a(25).
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e The corner of the square array with the first 16 terms of the first 12 rows looks like this:
%e ---------------------------------------------------------------------------
%e A000007: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
%e A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
%e A001316: 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16
%e A048883: 1, 3, 3, 9, 3, 9, 9, 27, 3, 9, 9, 27, 9, 27, 27, 81
%e A102376: 1, 4, 4, 16, 4, 16, 16, 64, 4, 16, 16, 64, 16, 64, 64, 256
%e A256135: 1, 5, 5, 25, 5, 25, 25, 125, 5, 25, 25, 125, 25, 125, 125, 625
%e A256136: 1, 6, 6, 36, 6, 36, 36, 216, 6, 36, 36, 216, 36, 216, 216, 1296
%e .......: 1, 7, 7, 49, 7, 49, 49, 343, 7, 49, 49, 343, 49, 343, 343, 2401
%e .......: 1, 8, 8, 64, 8, 64, 64, 512, 8, 64, 64, 512, 64, 512, 512, 4096
%e .......: 1, 9, 9, 81, 9, 81, 81, 729, 9, 81, 81, 729, 81, 729, 729, 6561
%e .......: 1,10,10,100, 10,100,100,1000, 10,100,100,1000,100,1000,1000,10000
%e .......: 1,11,11,121, 11,121,121,1331, 11,121,121,1331,121,1331,1331,14641
%Y Cf. A000120, A244003, A255740, A255741, A256141.
%Y First seven rows are A000007, A000012, A001316, A048883, A102376, A256135, A256136.
%Y First 16 columns are A000012, A001477, A001477, A000290, A001477, A000290, A000290, A000578, A001477, A000290, A000290, A000578, A000290, A000578, A000578, A000583.
%Y Main diagonal gives A302451.
%K nonn,tabl
%O 0,8
%A _Omar E. Pol_, Mar 16 2015