login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number T(n,k) of length 2n k-ary words, either empty or beginning with the first letter of the alphabet and using each letter at least once, that can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
5

%I #18 Oct 26 2018 09:53:59

%S 1,0,1,0,1,2,0,1,9,10,0,1,34,112,84,0,1,125,930,1800,1008,0,1,461,

%T 7018,26400,35640,15840,0,1,1715,51142,334152,816816,840840,308880,0,

%U 1,6434,368464,3944220,15550080,27824160,23063040,7207200

%N Number T(n,k) of length 2n k-ary words, either empty or beginning with the first letter of the alphabet and using each letter at least once, that can be built by repeatedly inserting doublets into the initially empty word; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A256116/b256116.txt">Rows n = 0..140, flattened</a>

%F T(n,k) = (Sum_{i=0..k} (-1)^i * C(k,i) * A183135(n,k-i)) / A028310(k).

%F T(n,k) = (k-1)! * A256117(n,k) for k > 0.

%e T(3,2) = 9: aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.

%e T(3,3) = 10: aabbcc, aabccb, aacbbc, aaccbb, abbacc, abbcca, abccba, acbbca, accabb, accbba.

%e T(4,2) = 34: aaaaaabb, aaaaabba, aaaabaab, aaaabbaa, aaaabbbb, aaabaaba, aaabbaaa, aaabbabb, aaabbbba, aabaaaab, aabaabaa, aabaabbb, aababbab, aabbaaaa, aabbaabb, aabbabba, aabbbaab, aabbbbaa, aabbbbbb, abaaaaba, abaabaaa, abaababb, abaabbba, ababbaba, abbaaaaa, abbaaabb, abbaabba, abbabaab, abbabbaa, abbabbbb, abbbaaba, abbbbaaa, abbbbabb, abbbbbba.

%e T(4,4) = 84: aabbccdd, aabbcddc, aabbdccd, aabbddcc, aabccbdd, aabccddb, aabcddcb, aabdccdb, aabddbcc, aabddccb, aacbbcdd, aacbbddc, aacbddbc, aaccbbdd, aaccbddb, aaccdbbd, aaccddbb, aacdbbdc, aacddbbc, aacddcbb, aadbbccd, aadbbdcc, aadbccbd, aadcbbcd, aadccbbd, aadccdbb, aaddbbcc, aaddbccb, aaddcbbc, aaddccbb, abbaccdd, abbacddc, abbadccd, abbaddcc, abbccadd, abbccdda, abbcddca, abbdccda, abbddacc, abbddcca, abccbadd, abccbdda, abccddba, abcddcba, abdccdba, abddbacc, abddbcca, abddccba, acbbcadd, acbbcdda, acbbddca, acbddbca, accabbdd, accabddb, accadbbd, accaddbb, accbbadd, accbbdda, accbddba, accdbbda, accddabb, accddbba, acdbbdca, acddbbca, acddcabb, acddcbba, adbbccda, adbbdacc, adbbdcca, adbccbda, adcbbcda, adccbbda, adccdabb, adccdbba, addabbcc, addabccb, addacbbc, addaccbb, addbbacc, addbbcca, addbccba, addcbbca, addccabb, addccbba.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 2;

%e 0, 1, 9, 10;

%e 0, 1, 34, 112, 84;

%e 0, 1, 125, 930, 1800, 1008;

%e 0, 1, 461, 7018, 26400, 35640, 15840;

%e 0, 1, 1715, 51142, 334152, 816816, 840840, 308880;

%p A:= proc(n, k) option remember; `if`(n=0, 1, k/n*

%p add(binomial(2*n, j) *(n-j) *(k-1)^j, j=0..n-1))

%p end:

%p T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)/

%p `if`(k=0, 1, k):

%p seq(seq(T(n, k), k=0..n), n=0..12);

%t Unprotect[Power]; 0^0 = 1; A[n_, k_] := A[n, k] = If[n==0, 1, k/n*Sum[ Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}]];

%t T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]/If[k==0, 1, k]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 22 2017, translated from Maple *)

%Y Columns k=0-2 give: A000007, A057427, A010763(n-1) for n>0.

%Y Main diagonal gives A065866(n-1) (for n>0).

%Y Row sums give A294603.

%Y Cf. A183135, A256117.

%K nonn,tabl

%O 0,6

%A _Alois P. Heinz_, Mar 15 2015