login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.
5

%I #12 Apr 28 2016 12:08:52

%S 1,2,3,2,3,2,5,2,3,5,3,5,7,2,5,7,2,3,7,2,3,5,7,2,3,5,7,11,2,3,5,7,11,

%T 2,3,5,11,13,2,3,7,11,13,3,5,7,11,13,2,3,5,7,11,13,2,5,7,11,13,17,2,3,

%U 5,7,11,13,17,2,3,7,11,13,17,19,2,3,5,11,13

%N Table read by rows: T(1,1) = 1, for n > 1: row n = union of distinct prime factors occurring in terms of n-th row of Pascal's triangle, cf. A007318.

%H Reinhard Zumkeller, <a href="/A256113/b256113.txt">b-file >>Rows n = 1..1000 of triangle, flattened</a>

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%e . n | T(n,k) | A001142(n) | A007318(n,0..n)

%e . ---+------------+---------------------------+-------------------------

%e . 1 | 1 | 1 | 1 1

%e . 2 | 2 | 2 | 1 2 1

%e . 3 | 3 | 9 | 1 3 3 1

%e . 4 | 2 3 | 96 | 1 4 6 4 1

%e . 5 | 2 5 | 2500 | 1 5 10 10 5 1

%e . 6 | 2 3 5 | 162000 | 1 6 15 20 15 6 1

%e . 7 | 3 5 7 | 26471025 | 1 7 21 35 35 21 7 1

%e . 8 | 2 5 7 | 11014635520 | 1 8 28 56 70 56 28 ...

%e . 9 | 2 3 7 | 11759522374656 | 1 9 36 84 126 126 84 ...

%e . 10 | 2 3 5 7 | 32406091200000000 | 1 10 45 120 210 252 210 ...

%e . 11 | 2 3 5 7 11 | 231627686043080250000 | 1 11 55 165 330 462 462 ...

%e . 12 | 2 3 5 7 11 | 4311500661703860387840000 | 1 12 66 220 495 792 924 ...

%o (Haskell)

%o a256113 n k = a256113_tabf !! (n-1) !! (n-1)

%o a256113_row n = a256113_tabf !! (n-1)

%o a256113_tabf = map a027748_row $ tail a001142_list

%Y Cf. A007318, A027748, A001142, A004788 (row lengths), A056606 (row products).

%K nonn,tabf

%O 1,2

%A _Reinhard Zumkeller_, Mar 16 2015