login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256097
Numerators of a rational guess r(n) for the input for Newton's algorithm to find sqrt(n).
1
1, 3, 2, 2, 9, 5, 11, 3, 3, 19, 10, 7, 11, 23, 4, 4, 33, 17, 35, 9, 37, 19, 39, 5, 5, 51, 26, 53, 27, 11, 28, 57, 29, 59, 6, 6, 73, 37, 25, 19, 77, 13, 79, 20, 27, 41, 83, 7, 7, 99, 50, 101, 51, 103, 52, 15, 53, 107, 54, 109
OFFSET
1,2
COMMENTS
The corresponding denominators are given in A256098.
This educated guess for the rational input R(n) = x(n;k=0) for the so-called Babylonian (also called Heron's) iteration to find sqrt(n) (Newton's method for sqrt(n)), x(n; k+1) = (x(n; k) + n/x(n; k))/2, k >= 0, was used in Vedic Mathematics (see the H.-W. Alhen et al. reference, pp. 145-146, and the MacTutor link on Sulbasutras). In the Wikipedia link on Shulba Sutras another suggestion is given how the approximation 1 + 1/3 + 1/(3*4) - 1/(3*4*34) for sqrt(2) was obtained in Sulbasutras. The explanation given in the H.-W. Alten et al. reference seems to me more convincing.
This R(n) is obtained by n = s(n)^2 + r(n) with s(n)^2 = A048760(n) (largest square not exceeding n) and the remainder r(n). Then the approximation of the square root is used sqrt(n) = sqrt(s(n)^2 + r(n)) approximately s(n)*(1 + r(n)/(2*s(n)^2)) = s(n) + r(n)/(2*s(n)). Note that A048760(n) = A000196(n)^2, that is, s(n) = floor(sqrt(n)).
REFERENCES
H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 145-146.
LINKS
The MacTutor History of Mathematics archive, Sulbasutras.
Wikipedia, Shulba Sutras.
FORMULA
a(n) = numerator(R(n)) with the rational (in lowest terms) R(n) = f(n) + (n - f(n)^2)/(2*f(n)) = (f(n) + n/f(n))/2 with f(n) := floor(sqrt(n)) = A000196(n), for n >= 1. See the comment above for this formula.
EXAMPLE
n = 2: s(n) = floor(sqrt(2)) = sqrt(A048760(2)) = 1, r(n) = 2 - 1^2 = 1. R(2) = s(2) + r(2)/(2*s(2)) = 1 + 1/(2*1) = 3/2. That is a(2) = 3 and A256098(2) = 2.
n = 17: s(n) = floor(sqrt(17)) = sqrt(A048760(17)) = 4 , r(n) = 17 - 4^2 = 1. R(17) = s(17) + r(17)/(2*s(17)) = 4 + 1/(2*4) = 33/8. That is, a(n) = 33 and A256098(17) = 8.
The rationals R(n) for n = 1..60 are: [1, 3/2, 2, 2, 9/4, 5/2, 11/4, 3, 3, 19/6, 10/3, 7/2, 11/3, 23/6, 4, 4, 33/8, 17/4, 35/8, 9/2, 37/8, 19/4, 39/8, 5, 5, 51/10, 26/5, 53/10, 27/5, 11/2, 28/5, 57/10, 29/5, 59/10, 6, 6, 73/12, 37/6, 25/4, 19/3, 77/12, 13/2, 79/12, 20/3, 27/4, 41/6, 83/12, 7, 7, 99/14, 50/7, 101/14, 51/7, 103/14, 52/7, 15/2, 53/7, 107/14, 54/7, 109/14,...]
For n=2 the Newton (Babylonian also called Heron) iteration produces. with x(2; k=0) = R(2) = 3/2: x(2; 1) = (3/2 + 4/3)/2 = 17/12 = 1 + 5/2 = 1 + 1/3 + 1/(3*4).
x(2; 2) = (17/12 + 24/17)/2 = 577/408 = 17/12 + (577/408 - 17*34/408) = 17/12 - 1/408 = 1 + 1/3 + 1/(3*4) - 1/(3*4*34) = 1.4142156... versus sqrt(2) = 1.4142135... (see A002193).
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Mar 24 2015
STATUS
approved