%I #7 Mar 15 2015 01:36:20
%S 6451,7717,8513,8963,9601,10501,10867,11317,11411,12227,13829,14561,
%T 15461,15733,16183,16529,16979,18517,19333,19427,19699,20149,20233,
%U 20327,22483,22567,23027,23561,23833,25717,26083,26261,26711,27077,27527,27799,27893,28867,29411,29683,30133,30677,30949,31033,31849
%N Non-palindromic balanced primes in base 16.
%C Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Palindromic primes (A029732 in base 16) are trivially balanced, therefore they are excluded here.
%C These are the primes in A256080. This is the hexadecimal variant of the decimal version A256076 suggested by Eric Angelini.
%o (PARI) is(n,b=16,d=digits(n,b),o=(#d+1)/2)=!(vector(#d,i,i-o)*d~)&&d!=Vecrev(d)&&isprime(n)
%Y Cf. A256080, A256076, A256075, A256082 - A256089, A029732.
%K nonn,base
%O 1,1
%A _M. F. Hasler_, Mar 14 2015