login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares representable as k*m + k + m, where k >= m > 1 are squares.
1

%I #18 Oct 19 2024 22:03:38

%S 49,169,324,441,961,1849,2209,3249,5329,8281,12321,15129,17424,17689,

%T 24649,33489,44521,58081,58564,64009,65025,74529,94249,103684,117649,

%U 145161,177241,191844,214369,237169,257049,305809,361201,423801,480249,494209,573049,660969,700569

%N Squares representable as k*m + k + m, where k >= m > 1 are squares.

%C A subsequence of A254671.

%C The sequence of square roots of a(n) begins: 7, 13, 18, 21, 31, 43, 47, 57, 73, 91, 111, 123, 132, 133, 157, 183, 211, 241, 242, 253, 255, 273, 307, 322, 343.

%C This sequence is infinite via x = m^2 and y = (m + 1)^2 so then x*y + x + y = m^2 * (m + 1)^2 + m^2 + (m + 1)^2 = m^4 + 2*m^3 + 3*m^2 + 2*m + 1 = (m^2 + m + 1)^2. - _David A. Corneth_, Oct 19 2024

%H David A. Corneth, <a href="/A256074/b256074.txt">Table of n, a(n) for n = 1..10657</a> (terms <= 10^16)

%e a(1) = 49 = 4*9 + 4 + 9.

%e a(2) = 169 = 9*16 + 9 + 16.

%o (PARI) v=[];for(m=2,100,for(k=m,10^3,if(issquare(s=(k*m)^2+k^2+m^2),v=concat(v,s))));vecsort(v) \\ _Derek Orr_, Mar 21 2015

%Y Cf. A000290, A058031, A066938, A254671.

%K nonn

%O 1,1

%A _Alex Ratushnyak_, Mar 14 2015

%E More terms from _David A. Corneth_, Oct 19 2024