login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256072
Primes that cannot be represented as x*y + x + y, where x >= y > 1.
1
2, 3, 5, 7, 13, 37, 61, 73, 157, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061, 3217, 3253, 3313
OFFSET
1,1
COMMENTS
Primes in A254636.
FORMULA
{2, 7} UNION A005383 = {7} UNION A079147. - Chai Wah Wu, Oct 15 2024
PROG
(Python)
import sympy
from sympy import isprime
TOP = 10000
a = [0]*TOP
for y in range(2, TOP//2):
for x in range(y, TOP//2):
k = x*y + x + y
if k>=TOP: break
a[k]+=1
print([n for n in range(TOP) if a[n]==0 and isprime(n)])
(PARI) v=[]; for(m=2, 500, for(k=m, 500, if(isprime(P=k*m+k+m), v=concat(v, P)))); v=vecsort(v, , 8); forprime(p=1, 2000, if(!vecsearch(v, p), print1(p, ", "))) \\ Derek Orr, Mar 21 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Mar 14 2015
STATUS
approved