login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that none of 9n + 1, 9n + 2, 9n + 3, 9n + 4, 9n + 5, 9n + 6, 9n + 7 and 9n + 8 are squarefree.
0

%I #35 Sep 08 2022 08:46:11

%S 24574158,29146163,156385858,173105316,246414308,404413338,553659041,

%T 556221794,745644336,760923063,789864069,794287963,893806805,

%U 983628183,1033093563,1134287383,1138839886,1418521141,1559578963,1702800491,1750142480,2080676083,2117324180

%N Numbers n such that none of 9n + 1, 9n + 2, 9n + 3, 9n + 4, 9n + 5, 9n + 6, 9n + 7 and 9n + 8 are squarefree.

%C Two of 9n+1..9n+8 are multiples of 4, so concentrate on the other six. The probability that any k of these six are all squarefree is P(k) := Product {p prime > 3} (p^2-k)/p^2. By inclusion-exclusion, the probability that none of the six are squarefree is 1 - 6P(1) + 15P(2) - 20P(3) + 15P(4) - 6P(5) + P(6), or roughly one in 92600000. - _Michael R Peake_, Apr 04 2017

%e 24574158 is in this sequence because

%e 9 * 24574158 + 1 = 221167423 = 230143 * 31^2,

%e 9 * 24674158 + 2 = 221167424 = 3455741 * 2^6,

%e 9 * 24674158 + 3 = 221167425 = 128213 * 23 * 5^3,

%e 9 * 24674158 + 4 = 221167426 = 80777 * 2 * 37^2,

%e 9 * 24674158 + 5 = 221167427 = 45127 * 29 * 13^2,

%e 9 * 24674158 + 6 = 221167428 = 18430619 * 3 * 2^2,

%e 9 * 24674158 + 7 = 221167429 = 33937 * 19 * 7^3,

%e 9 * 24674158 + 8 = 221167430 = 3889 * 47 * 5 * 2 * 11^2.

%o (Magma) [n: n in [1..25000000] | not IsSquarefree(9*n+1) and not IsSquarefree(9*n+2) and not IsSquarefree(9*n+3) and not IsSquarefree(9*n+4) and not IsSquarefree(9*n+5) and not IsSquarefree(9*n+6) and not IsSquarefree(9*n+7) and not IsSquarefree(9*n+8)];

%o (PARI) is(n)=for(k=9*n+1,9*n+8,if(issquarefree(k),return(0))); 1 \\ _Charles R Greathouse IV_, Jun 02 2015

%Y Cf. A013929, A258211, A258332.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, May 31 2015

%E a(3)-a(8) from _Charles R Greathouse IV_, Jun 02 2015

%E a(9)-a(23) from _Charles R Greathouse IV_, Jun 03 2015